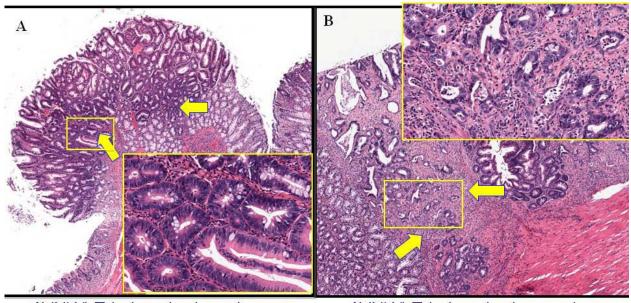


Aloe vera non-decolorized whole leaf extract (AVNWLE)-induced large intestinal tumors in F344 rats exhibit similarities with human sporadic colon cancer

Arun Pandiri, BVSc&AH, MS, PhD, DACVP

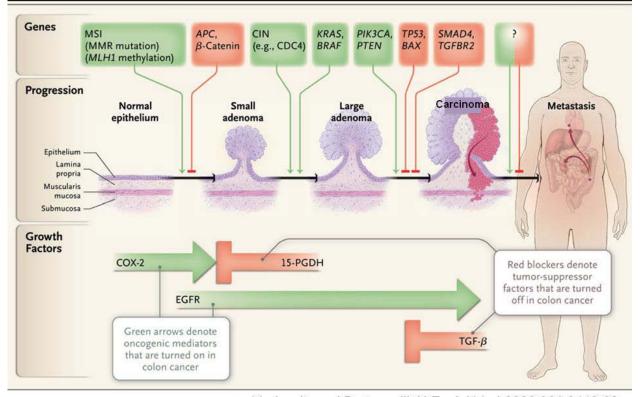
National Institute of Environmental Health Sciences


(present address: Experimental Pathology Laboratories, Inc., Research Triangle Park, NC)

Technical Reports Peer Review Meeting
April 5, 2011

AVNWLE-induced large intestinal adenomas and carcinomas in F344 rats have morphological features similar to human colon cancer

AVNVVLE-induced colon adenoma


AVNWLE-induced colon carcinoma

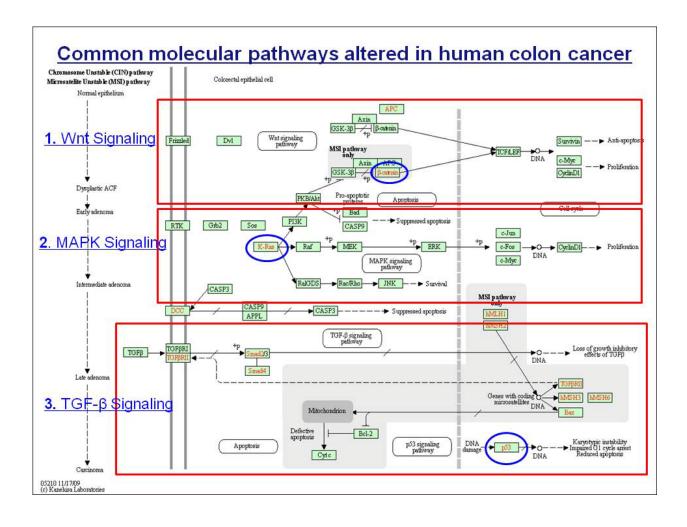
Colon Cancer in Humans

- 4th commonly diagnosed cancer, but 2nd leading cause of cancer-related death
- Based on genetic origin 15%
 - Familial adenomatous polyposis (FAP)
 - Hereditary nonpolyposis colon cancer (HNPCC) aka Lynch syndrome
- Sporadic CRC 85%

Markowitz and Bertagnolli, N Engl J Med 2009;361:2449-60.

Hypothesis:

Genetic alterations within AVNWLE-induced large intestinal tumors in F344 rats are similar to sporadic colon cancer in humans.



Common genetic alterations in human and rodent colon tumors

Species	Carcinogon	Lesion		Mutation	frequency	(%)	
Species	Carcinogen	Lesion	APC	β-Catenin	K-ras	DCC	p53
Human		Adenocarcinoma	40-80	15	40-60	40-70	50-80
		Adenoma	40-65	_ \	0-40	_	I –
		ACF	<5		10-95	_	_
Rat	MOA	Adenocarcinoma	8	75	30-60	_	0
		ACF	0		20-40	_	0
	PhIP	Adenocarcinoma	13	50	0	_	0
	MNU	Adenocarcinoma	_	\ - /	18	_	27
Mouse	AOM	Adenocarcinoma	_	100	0-10	_	0

Takahashi and Wakabayashi, Cancer Sci (2004) 95:6, 475–480

"-" not tested

Experimental design

1) Mutation analysis

- DNA from adenoma (8), carcinoma (4), and untreated control colons (4)
- · "Hot spots" for mutations relevant to human colon cancer
 - \circ *Ctnnb1* (β -catenin) (exon 2)
 - Kras (exons 1-2)
 - o Tp53 (exons 5-8)

2) Pathway analysis

- RNA from adenoma (4), carcinoma (4), and untreated colonic epithelium
 (4)
- Evaluation of pathways involved in human colon cancer
 - O WNT pathway (84 genes) Catalogued PCR array
 - o MAPK pathway (84 genes) Catalog@ed PCR array ned PCR
 - o TGF-β pathway (32 genes)
 - Other colon cancer genes (60 genes)

Results

Mutation frequency in AVNWLE-induced large intestinal tumors

Group	<u>Ctnnb1 mutations</u> (Codons 32, 34, 41, 45)		Tp53 mutations (Exons 5-8)
Untreated Colon	0/4	0/4	0/4
Adenoma	3/8	2/8	0/8
Carcinoma	1/4	2/4	0/4

Group	% <u>Ctnnb</u> 1 mutations	% Kras mutations	% <u>Tp5</u> 3 mutations
AVNWLE	33	33	0
Human CRC	15-26	40-60	50 [*]
Azoxymethane	50-80	30-60	0
Heterocyclic Amines	50-75	0-14	0

*p<0.05

^{*}Kras and Ctnnb1 mutation frequency is similar to that of sporadic human colon cancer

Results

Mutation frequency in AVNWLE-induced large intestinal tumors

Group	<u>Ctnnb1 mutations</u> (Codons 32, 34, 41, 45)		Tp53 mutations (Exons 5-8)
Untreated Colon	0/4	0/4	0/4
Adenoma	3/8	2/8	0/8
Carcinoma	1/4	2/4	0/4

Group	% <u>Ctnnb</u> 1 mutations	% Kras mutations	% <u>Tp5</u> 3 mutations
AVNWLE	33	33	0
Human CRC	15-26	40-60	50 [*]
Azoxymethane	50-80	30-60	0
Heterocyclic Amines	50-75	0-14	0

*p<0.05

^{*}Kras and Ctnnb1 mutation frequency is similar to that of sporadic human colon cancer

Wnt signaling in AVNWLE-induced large intestinal tumors

39/84 genes relevant to human colon cancer significantly altered

- 1) β-catenin-dependent Wnt signaling
 - APC complex, Wnt ligand binding
- 2) β-catenin-independent Wnt signaling pathways
 - Wnt/Ca2+ pathway
 - Wnt/planar cell polarity (PCP) pathway

Mediators of Wnt signaling	Genes
Wnt ligands	Wif1, Wnt3, Wnt4, Wnt7b
APC complex	Axin1, Dvl1, Frzb, Fzd2, Fzd5, Fzd6
Other genes	Ctnnb1, RhoA, Bcl9, Dkk3, Nkd2, Sfrp1, Sfrp4
Non-canonical Wnt signaling	Wnt5a, Fzd6, Dvl1, RhoA, Nkd1, Nkd2

Wnt signaling in AVNWLE-induced large intestinal tumors

39/84 genes relevant to human colon cancer significantly altered

- 1) β-catenin-dependent Wnt signaling
 - APC complex, Wnt ligand binding
- 2) β-catenin-independent Wnt signaling pathways
 - Wnt/Ca2+ pathway
 - Wnt/planar cell polarity (PCP) pathway

Mediators of Wnt signaling	Genes
Wnt ligands	Wif1, Wnt3, Wnt4, Wnt7b
APC complex	Axin1, Dvl1, Frzb, Fzd2, Fzd5, Fzd6
Other genes	Ctnnb1, RhoA, Bcl9, Dkk3, Nkd2, Sfrp1, Sfrp4
Non-canonical Wnt signaling	Wnt5a, Fzd6, Dvl1, RhoA, Nkd1, Nkd2

$\underline{\mathsf{TGF-}\beta\mathsf{signaling}}$ in AVNWLE-induced large intestinal tumors

48/92 genes relevant to human colon cancer significantly altered

Mediators of TGF-β signaling	Genes
Transcription regulators	Smad1, Smad2, Smad5
Growth factors	Tgfb1, Tgfb2, Tgfb3, Bmp1, Bmp4, Inhba
Kinases	Tgfbr1, Tgfbr2, Tgfbr3

Other important genes in Colon cancer	Genes
Transcription regulators	Klf4, Sox9, Sox4, Stat1, Stat3, Tcf7l2
Kinases	Pik3cb, Pik3r1, Pik3r1, Akt1, Akt2, Akt3, Fgfr1, Sgk1, Stk11
Phosphatases	Cdc25a, Dusp4, Ptpro Ptprs
Apoptosis	Birc5, Bax, Casp3
Other significant colon cancer genes	Tnf-α, Nos2, Ca2, Hpgd, Hsd17b2, Msh2, Psat1, Timp1, Hspd1, Top2a, Sparc

Conclusion

- AVNWLE-induced colon tumors in F344 rats
 - Contain point mutations in Kras or Ctnnb1
 - Appear not to have *Tp53* mutations
 - Have alterations within Wnt, MAPK, and TGF-β signaling pathways
- AVNWLE-induced colon tumors in F344 rats share morphological and molecular features with human colon cancer

Acknowledgements

National Toxicology Program

National Center for Toxicological Research

Dr. Robert Sills

Dr. Mark Hoenerhoff

Dr. Shyamal Peddada

Mr. Thai-Vu Ton

Ms. Hue-Hua Hong

Dr. Gordon Flake

Dr. David Malarkey

Dr. Nigel Walker

Dr. Mary Boudreau Dr. Igor Pogribny

Future Directions

Collaboration with NCTR

- Compare genetic, epigenetic and protein changes in tumors and histologically normal colon tissue adjacent to tumors
- Subchronic studies of Aloe vera and Senna
 - Detect early genetic and epigenetic alterations within colonic mucosa
 - Study the progression of early lesions: histologically normal colon> aberrant crypt foci & mucin depleted foci > adenoma

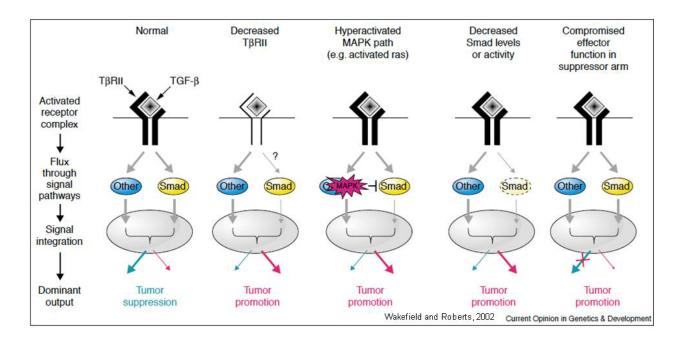
	Tumor suppressor activities	Pro-oncogenic activities
Initiated cell target	Growth Inhibition Apoptosis Negative angiogenic regulator profile Maintenance of genomic stability Induction of replicative senescence Prevention of immortalization Maintenance of tissue architecture	Enhanced epithelial → mesenchymal transition Increased motility Increased invasiveness Increased colonization of bone (PTHrP secretion) Growth stimulation
Stromal target	Maintenance of tissue architecture?	Suppression of immune surveillance Increased angiogenesis

Normal epithelium

Suppressor activities dominate

Reduced or altered epithelial responsiveness to TGF-βs

Increased TGF-β production or activation


Invasive metastatic cancer

Oncogenic activities dominate

Current Opinion in Genetics & Development Wakefield and Roberts, 2002

Summary of Mutation Analysis

Samp	le Dos	e Anim	al Da		K-ras		β-Catenin	P	-53
No.	(%)	ID		Cdn 2	12 Cdn 1	3 Cdn 6	1	Ex	on 5-8
6	1.0	1712	Ad	NM	GGC->CG Gly->Ar		NM	NM	NM
7	1.0	1711	Ad	ММ	NM	NM	Codon 32 <u>G</u> AT-> <u>A</u> AT Asp->Asn	NM	NM
8	1.0	1812	Ad	NM	NM	NM	NM	NIM	NM
9	1.5	1301	Ad	NM	MM	NM	Codon 45 T <u>C</u> C->T <u>T</u> C Ser->Phe	NM	NM
10	1.5	1102	Ad	NM	NM	MM	NM	NM	MM
11	1.5	1602	Ad	NM	GGC->CG	C NM	NM	NM	NM
					Gly->Arg				
12	1.5	1922	Ad	NM	NM	NM	Codon 41 ACC->CCC Thr->Pro	NM	NM
13	1.0	1052	Ca	NM	NM	C <u>A</u> A->C <u>G</u> A Glu->Arg		MM	NM
14	1.0	1151	Ca	GGT->GAT Gly->Asp	MM	NM	NM	NM	NM
15	1.0	1402	Ca	NM	NM	NM	Codon 34 G <u>G</u> A->G <u>A</u> A	NM	NM
		1001			200		Gly->Glu		100
16	1.5	1921	Ca	NM	NM	NM	NM	NM	NM